【协和医学杂志】微生态菌群与子宫内膜异位症相关性研究进展

时间:2025-03-29 12:11:49   热度:37.1℃   作者:网络

综 述

子宫内膜异位症(EMs)是一种慢性、激素依赖性、全身炎症反应性疾病,可引起痛经、慢性盆腔痛、不孕、心理障碍等症状,其中以痛经最为常见,发生率高达84.9%[1--2]。由于缺乏特异性症状,多数EMs存在诊断延迟(平均延迟7~11年)[3],加上躯体不适、激素治疗及生活工作不便等因素的影响,患者生活质量常受到干扰。探索EMs发生发展的相关因素,有助于该病的早期诊断和治疗。人体微环境中存在特定的微生态菌群,其组成和分布改变可能与EMs发生及严重程度密切相关,通过维持生殖道和肠道微生态平衡,抑制有害菌增殖,对EMs的治疗具有促进作用[4-5]。本研究围绕微生态菌群与EMs的相关性展开综述,以期为该病的诊疗提供更多思路。

1 微生态失衡与EMs发病机制

人体微生态菌群主要分布于口腔、胃肠道和泌尿生殖道,正常情况下,各菌群之间相互制约和依存,共同维持微生态菌群动态平衡和人体正常功能。当微生态平衡被打破时[6-7],可引发泌尿生殖系统、消化系统、神经系统等疾病。

越来越多的证据表明,微生物在EMs炎症形成和发展中发挥作用,EMs患者存在的微生态失调被认为是该病的病因之一,可能机制如下:

微生物菌群失衡可破坏正常的免疫功能,导致促炎细胞因子水平升高,免疫功能受损。随着时间推移,此种免疫失调可进展为慢性炎症状态,形成有利于增加黏附和血管生成的微环境,驱动了EMs发病和进展的恶性循环[4,8-9]

2018年Khan等[10]针对EMs发生机制首次提出了“细菌污染假说”新概念,其发现经血受到大肠杆菌的高度污染,这些细菌可在子宫内膜中定植并产生炎症因子,通过脂多糖/Toll样受体(TLR4)级联反应调节局部促炎症反应和子宫内膜异位组织生长。

胃肠道及生殖道微生态失衡后,一些机会致病菌可释放多种细胞因子,降低胃肠功能、改变雌激素代谢信号通路,通过性腺轴和肠脑轴引起外周和中枢敏化,进一步促进EMs发生发展[11-13]

1.1 口腔菌群与EMs

口腔微生态是人体微生态的重要组成部分,口腔微生态菌群失衡与一些炎症性疾病相关。轻度脑损伤后口腔微生物可出现种群数目减少和群落多样性降低,最具代表性和最丰富的菌门包括变形菌门、拟杆菌门、厚壁菌门和放线菌门,随着脑损伤时间延长,口腔变形杆菌和拟杆菌数量上升趋势显著[14]。内皮细胞破坏是动脉粥样硬化最基础的病理改变,牙周感染可直接或间接引起免疫失调,释放过量炎症介质进入体循环损伤内皮细胞,从而加重动脉粥样硬化[15]。研究显示,EMs患者的口腔唾液中链球菌属、副猪嗜血杆菌属和普雷沃氏菌属最多[16],但尚无证据表明口腔微生态与EMs有关。

1.2 肠道菌群与EMs

肠道菌群在食物消化、免疫激活和肠道内分泌信号传导途径的调节中起重要作用。健康、平衡的肠道菌群有助于保护黏膜完整性,防止细菌及其代谢产物移位,以维持正常的免疫状态。研究显示,肠道菌群可通过产生特定的代谢化合物,如短链脂肪酸粘附于肠上皮细胞表面的游离脂肪酸受体上,并与神经元相互作用或进入循环系统,参与调节肠壁神经元发育和更新[16]。有害菌群丰度增高或有益菌减低均可能造成肠道微生态失衡,导致肠道上皮细胞完整性被破坏,黏膜屏障对病原微生物的防御体系发生缺陷,局部炎症反应增强,并通过肠脑轴改变中枢神经连接、促进中枢炎症因子表达,导致神经系统炎症和免疫功能改变,为EMs进展提供适宜的环境[17-18]

1.2.1 肠道菌群与EMs代谢

合并代谢综合征的EMs患者肠道微生物呈失衡状态,表现为肠球菌、大肠杆菌、假单胞菌、嗜血杆菌和奈瑟菌属丰度增加,双歧杆菌减少,并影响人体能量代谢和葡萄糖代谢。动物模型显示,肠球菌诱导的EMs小鼠体内植物同源结构域指蛋白11表达明显下调,白细胞介素(IL)-8表达明显上调,巨噬细胞增多,以致自噬失调,诱导表观遗传修饰并伴随炎症反应增强,导致EMs浸润程度加重[15]。肠道双歧杆菌可降低炎症反应,延缓EMs发展,对机体发挥保护作用[19]。微生物代谢物奎宁酸在体外可促进EMs异位上皮细胞存活和体内病灶生长,表明微生物来源的代谢物具有促进EMs进展的作用[20]。提示,肠道微生物失衡可致人体代谢紊乱并通过菌群代谢产物促进炎症反应,加重EMs病情。

EMs为雌激素依赖性疾病,肠道杆菌、厚壁菌门等可产生β-葡糖醛酸酶,其可将雌激素解偶联为活性形式的酶,以上调循环中的雌激素,增加EMs发病风险[9,21]。Pai等[22]在研究中发现,EMs患者肠道中厚壁菌门的4个属(UBA1819、艾森伯格菌属、Hungatella和丹毒丝菌属)显著富集,其中丹毒丝菌属的富集度最高,并伴随循环雌三醇、16-表雌三醇、16α-羟雌酮和2-甲氧基雌二醇显著升高。Elkafas等[23]研究显示,EMs患者肠道微生态明显失调,表现为产生β-葡糖醛酸酶的厚壁菌门增加、厚壁菌门与拟杆菌门比率增大,引起高雌激素的病理状态,而雌激素暴露增加是EMs发生和进展的重要危险因素。

1.2.2 肠脑轴

肠脑轴是联系肠道微生物群、肠道免疫系统、神经内分泌系统和中枢神经系统的双向调节系统。肠道微生物群失调(如志贺菌和大肠杆菌丰度升高)通过激活星形胶质细胞、内皮细胞、小胶质细胞、单核细胞、巨噬细胞、周细胞和 T 细胞产生多种促炎介质,如CXCL-1、IL-1β、干扰素-γ及肿瘤坏死因子α(TNF-α)调控神经炎症[24]。文献证实,中枢痛觉敏化与EMs相关慢性盆腔疼痛呈显著相关性[25-26],而肠道菌群失衡可通过脑肠轴上行调节神经炎症反应,激活神经小胶质细胞、星形胶质细胞和免疫细胞及核因子-κB(NF-κB)信号通路[27],使脑组织中促炎细胞因子(IL-1β、IL-6、IL-8、TNF-α)、NF-κB p65、淀粉样前体蛋白等表达水平升高,血脑屏障结构蛋白claudin-5和Occludin减少[28-30],以致血脑屏障被破坏,引起中枢痛觉敏化。

此外,上行的神经炎症反应可诱导小胶质细胞或星形胶质细胞分泌多种细胞因子和趋化因子,通过增加谷氨酸、降低γ-氨基丁酸代谢水平影响突触神经递质传递,进一步加剧中枢痛觉敏化。这些增多的代谢物还可激活脑神经,通过下丘脑-垂体-卵巢轴促进卵巢中雌激素分泌[27],最终导致EMs发生和进展[31]。因此,肠道微生物群不仅参与EMs发病,也可能是EMs慢性疼痛的基础,肠道菌群失衡可通过氧化应激、神经炎症、淀粉样蛋白β形成等途径引起神经死亡和免疫功能改变,进而诱发EMs[32]

1.3 生殖道菌群与EMs

生殖道菌群包括阴道菌群、宫颈菌群、子宫内膜菌群,是女性生殖系统的重要组成部分。生殖道菌群失衡可导致炎症介质过量产生,继而引发全身免疫炎症反应,可能是EMs的重要发病机制,而且炎症反应可进一步促进生殖道菌群变化,加重EMs严重程度,以形成不良循环。

乳酸杆菌是健康女性阴道内最丰富的细菌,其作为有益菌群在一定程度上可抑制致病菌生长和炎症反应,在维持机体正常生理功能中发挥重要作用,尤其是卷曲乳酸杆菌,可竞争性抑制其他细菌与上皮细胞相结合并产生乳酸,杀死或抑制致病菌,也可阻断蛋白脱乙酰酶,促进基因转录和DNA修复,从而对阴道生态效应具有保护功能[32-34]

研究显示,与妇科急腹症患者相比,EMs患者自宫颈向上至子宫内膜和腹腔液中出现明显微生物分布差异,宫颈微生物群中普雷沃菌、韦荣球菌属、阿托波菌属显著富集,鞘氨醇杆菌和绿色假单胞菌在子宫内膜和腹腔液中显著富集[33]。生殖道微生物群的改变可能参与了EMs的发生和发展,为研究EMs的早期发现或症状控制,甚至疾病预防提供了更多思路。

1.3.1 EMs患者的生殖道菌群稳态失衡

目前研究表明生殖道菌群稳态可被两种机制所破坏,一是细菌多样性增加或主要细菌转变,触发阴道炎症;二是局部免疫改变使微生态菌群不能对环境变化作出反应,导致阴道上皮损伤和炎症增强[34-35]

EMs患者的生殖道菌群存在明显失衡现象,包括菌群异位、有益菌减少、有害菌异常增殖[7,36],表现为乳酸杆菌数量明显减少,致病菌如放线菌属、加德纳菌和奇异菌属等显著富集。

在物种水平上,发现EMs相关的慢性盆腔痛主要与阴道内丁酸梭菌、梭状芽孢杆菌、Alloscardovia omnicolensVeillonella montpellierensis增加有关,同时与詹氏乳杆菌、鲁特氏乳杆菌和惰性乳杆菌缺乏有关[37]

多项研究显示,EMs患者宫颈生物群落多样性增加,表现为纤毛菌属、加德纳菌属、支原体、棒状杆菌属、肠杆菌属、黄杆菌属、假单胞菌属和链球菌属丰度增加,其中以肠杆菌和链球菌为著[33,38-39],这些阴道内异常增殖的致病菌可通过生殖道管腔、子宫蠕动上行进入宫腔,引起免疫炎症反应[16],诱导EMs发生。

1.3.2 生殖道菌群免疫代谢与EMs

EMs患者的生殖道菌群中,微生态菌群产生的代谢产物可通过炎症免疫途径或神经内分泌调节,参与EMs引起的疼痛和炎症过程[40]。阴道毛滴虫、普雷沃菌或阴道球菌等致病性微生物增多可引发菌群微生态失衡,通过脂多糖/TLR4信号途径或脂肽/TLR2通路参与固有免疫系统,导致上皮细胞损伤,使阴道pH升高和促炎细胞因子上调,诱导EMs发病或病理生理改变[34,41-42];同时,炎症相关细胞,如中性粒细胞可通过PD-1/PD-L1轴调控免疫抑制微环境,进一步加重微生态稳态失衡,促进EMs进展[43]

 

1.3.3 生殖道菌群神经内分泌代谢与EMs

一方面生殖道菌群失衡可能是EMs发病的重要因素,另一方面EMs可加剧生殖道菌群紊乱,进一步促进病情进展。有研究显示,阴道菌群紊乱可通过NF-κB信号通路上行传导,促进TLR4、MyD88和 p65表达,增加神经敏感性和局部免疫炎症反应,导致激素代谢紊乱,促进EMs病情进展;同时激素紊乱可增加细菌感染的风险,促进异位和在位子宫内膜异位生长,导致EMs恶化[36,44]。文献显示,EMs可导致疼痛、焦虑和抑郁等心理症状,而这些情绪改变可减少阴道中乳酸杆菌含量,加速炎症发展[18]。EMs导致的情绪认知改变,通过影响下丘脑-垂体-肾上腺轴反馈系统降低凤凰蛋白分泌、引起神经内分泌轴功能失调、增强机体炎症反应及EMs的疼痛感,加重EMs病情和生殖道微生态失衡[21,45]

1.4 微生态相互作用关系

人体口腔、肠道、生殖道菌群并非独立存在,而是呈相互交通、互相影响的关系。因女性盆腹腔经输卵管与外界相通,多项研究表明EMs患者腹腔菌群也发生了变化。EMs患者口腔菌群与生殖道菌群无重叠性,而肠道菌群和生殖道菌群可能受肛门-生殖器距离的影响而出现部分重叠[15],也可通过炎症反应及胃肠道、生殖道蠕动功能,促进不同部位的菌群移位和交流。

Lee等[46]研究表明,EMs患者和健康人群的腹腔液体中菌群多样性存在显著差异,EMs患者腹膜环境中不动杆菌、假单胞菌、链球菌和拟杆菌的数量显著增加,而丙酸杆菌属、放线菌和罗氏菌属数量则显著减少。在一项临床研究中,卵巢EMs组腹腔液中IL-6、IL-10、IL-13、TNF-α等炎症因子呈高表达,其可增加上皮细胞之间的通透性,促进胃肠道和生殖道菌群向腹腔环境释放,使腹腔环境中微生态改变,表现为变形杆菌属和厚壁菌属增加最为明显,其次为放线杆菌属、拟杆菌属、梭菌属[47]

另两项临床研究发现,EMs患者肠道和生殖道微生态菌群变化后,可引起腹腔菌群出现类似变化[38-39]。上述研究表明,EMs的微生态失衡为机体系统性功能失调,这不仅与EMs介导的免疫、内分泌及神经代谢功能紊乱有关,同时也与微生态在机体的互通交流和微生态介导的内分泌-免疫-神经代谢紊乱相关,提示对EMs的研究和诊治应具有系统性和整体性观念。

2 微生态菌群与EMs诊断

目前EMs的诊断主要依据症状学及病理学活检,超声影像学对该病具有一定的诊断意义,但难以实现早发现、早诊断、早治疗的目标。目前尚未有明确证据表明微生态菌群可作为EMs诊断的分子标志物,一些研究发现微生态菌群与EMs之间存在密切关联,对不同分期EMs患者的研究表明,肠道菌群赫山单胞菌属有望对EMs进行早期诊断[19]

MicroRNA-17-5p在EMs患者中表达升高与子宫内膜中加德纳菌、无乳链球菌、金黄色葡萄球菌、动弯杆菌和大肠杆菌检测阳性有关,而EMs患者中检测MicroRNA-17-5p的灵敏度为90%,特异度为76.5%,提示MicroRNA-17-5p可作为微生物菌群在EMs诊断中的间接潜在标志物[48-49]

一项横断面研究显示,在EMs患者中,阴道菌群中厌氧球菌(解乳厌氧球菌和Anaerococcus degenerii)可预测EMs的rASRM分期[50],提示监测此类菌群变化有助于对EMs进行早期诊断和病情评估。

此外,梭状芽孢杆菌相对丰度超过0.001105%联合鲁特氏乳杆菌相对丰度低于0.1911349%诊断EMs相关慢性盆腔痛的灵敏度为81.08%,联合血清CA125时,灵敏度增至89.19%,表明阴道微生物结合CA125检测可能成为鉴别EMs相关盆腔疼痛的一种新方式[37]

总之,微生态菌群变化与EMs病情、症状具有一定相关性,可能为EMs的早期诊断提供更多思路,但相关研究较少,尚需高级别循证医学证据支持。

3 微生态菌群与EMs治疗

3.1 激素为主的药物治疗

通过激素和抗炎药物控制疾病发展和临床症状是EMs治疗的重要方式,其作用机制为下调下丘脑-垂体-性腺轴可诱导低雌激素状态,对疾病进展具有抑制作用,从而降低手术切除的复发率[51]。目前主要治疗药物为促性腺激素释放激素类似物(GnRHa),其可有效降低雌激素和孕激素水平,下调炎症水平,缓解EMs相关痛经和非月经疼痛症状[52-53]。然而有研究指出,接受GnRHa治疗的EMs患者子宫内膜菌群和异位囊肿中乳酸杆菌比例下降、肠道菌群中葡萄球菌和链球菌比例升高[41,54],这提示GnRHa或可具有促进无症状宫内感染或卵巢感染的副作用。

在 EMs 小鼠模型中,在GnRHa治疗的基础上增加广谱抗生素(万古霉素、新霉素、甲硝唑和氨苄西林),可通过减少EMs相关肠杆菌或肠球菌含量,缩小EMs病灶、降低炎症反应程度[55]。提示,激素结合抗炎药物治疗可能通过调节躯体激素水平和菌群结构以控制疾病发展,但目前的药物治疗仍以缓解EMs症状为主,治疗过程中需考虑激素和抗炎药物治疗产生的副作用,慎重用药。

3.2 调节微生态平衡治疗

3.2.1 饮食调节

改变饮食习惯是改善微生态菌群的途径之一。动物模型显示,低纤维氨基酸饮食可导致肠道菌群多样性降低,与EMs相关的细菌丰度增加(如普雷沃菌属),与发酵途径相关的肠道微生物群下调,并可改变大脑微环境,有利于减轻炎症反应[56]

维生素D、多不饱和脂肪酸(如omega-3和omega-6)、白藜芦醇(葡萄、虎杖)、N- 乙酰半胱氨酸(小麦胚芽、西兰花、洋葱、大蒜)具有减轻炎症、抑制血管生成和诱导细胞凋亡的作用,在一定程度上可弱化EMs异位组织的细胞增殖和氧化应激[57-59]

摄入核苷酸可增加与神经发育、消化和肠道吸收相关的有益微生物,如罗氏菌和阿克曼菌[60],从而预防微生态失调。食用发酵小麦胚芽可改变大鼠的肠道微生物群结构,重塑肠道微生物群,通过肠脑轴改善大鼠的神经递质水平,恢复脑组织氨基酸代谢功能,减轻神经炎症和中枢痛觉敏化[61],有助于缓解EMs相关疼痛。

3.2.2 药物

中药的一些成分(如雄黄)可通过调节微生物群-肠脑轴抑制神经炎症反应、减轻血脑屏障损伤、改善代谢紊乱和微生物失衡而产生神经保护作用[30],同时维持肠道微生态平衡,控制全身炎症反应,对EMs具有一定的治疗功能。人参、五味子和鼠尾草的有效成分可与肠道微生物群相互作用,调节心理状态,减轻情绪压力,进而维持肠道微生态平衡,降低躯体炎症免疫反应[62]。阴道菌群紊乱的EMs患者中,予以混合抗生素和小白菊内酯可抑制NF-κB信号通路中TLR4、MyD88和p65/p-p65表达,降低炎症因子IL-1β水平,缓解病情进展[36]

3.2.3 益生菌

益生菌可通过改善或恢复肠道菌群以发挥治疗EMs的作用。研究表明,益生菌通过微生物群-肠脑轴调节肠道微生物群组成和功能,如在空肠,益生菌可调节Hsp60、Hsp90和IκB-α水平,影响NF-κB信号通路,减少促炎因子释放,促进肠道短链脂肪酸分泌和单胺类神经递质产生,恢复脑神经营养因子水平,减轻中枢痛觉敏化,协助恢复肠道正常微生态,缓解EMs相关疼痛症状[63-64]

口服补充Akkermansia可用于治疗EMs合并炎症性肠病代谢紊乱,缓解炎症状况[64]。乳酸杆菌对EMs具有潜在的治疗价值,予以实验小鼠补充嗜酸乳酸杆菌48 h后可观察到在肠道微生物调节的作用下促炎细胞因子产生减少,其作用机制如下:

1

乳酸杆菌可抑制IL-6表达,下调TNF-α水平以控制EMs相关炎症,在肠道和脑组织中发挥抗炎和细胞保护作用;

2

可通过产生紧密连接蛋白,恢复被破坏的肠黏膜屏障[65],调控肠道微生物多样性,延缓EMs进展。

3.2.4 菌群移植

基于小鼠的研究显示,阴道菌群移植有助于缩小EMs病灶。在该项小鼠实验中,移植了健康小鼠阴道分泌物的EMs模型小鼠异位组织病变小于对照组,细胞增殖标志物 Ki-67和巨噬细胞标志物Iba-1表达水平均降低,提示健康平衡的阴道微生物对EMs具有抑制作用,菌群移植可能为EMs潜在治疗策略,但由于人体与小鼠的菌群差异显著,其临床价值尚需进一步研究[36]

除采用阴道菌群移植外,基于肠道优势微生物群的粪便移植治疗,可恢复肠道微生物群丰度和组成[29],如肠道阿克曼菌具有保护肠黏膜屏障、调节免疫系统和代谢物(如短链脂肪酸,氨基酸和氨基酸衍生物)水平的作用,发挥治疗EMs的潜在价值[66]

4 小结

微生态菌群是人体的重要组成部分,在调节免疫状态、炎症反应、神经功能等方面发挥重要作用,其组成或分布改变可导致多种疾病。研究显示,EMs患者中存在多种菌群表达异常,而微生态菌群失衡可通过局部或全身炎症反应,促进EMs发生与发展。鉴于微生态菌群与EMs的相关性,一些特定菌群有望成为EMs诊断的分子标志物,监测其变化为EMs的早期诊断和治疗提供了新的思路和依据。目前,该研究方向面临诸多问题尚未解决,如多数研究成果基于基础研究而获得,基于不同部位菌群建立的EMs早期预测模型的准确性存在较大差异,基于肠道菌群的治疗策略是否具有临床应用价值尚阐明。未来需进一步探究微生态菌群与EMs的相关性,以期为EMs的诊疗提供切实可行的新方法。

参考文献

[1]He G M, Chen J B, Peng Z Q, et al. A study on the correlation between quality of life and unhealthy emotion among patients with endometriosis[J]. Front Psychol, 2022, 13: 830698.

[2]Le N, Cregger M, Fazleabas A, et al. Effects of endometriosis on immunity and mucosal microbial community dynamics in female olive baboons[J]. Sci Rep, 2022, 12(1): 1590.

[3]Taylor H S, Kotlyar A M, Flores V A. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations[J]. Lancet, 2021, 397(10276): 839-852.

[4]Chen S K, Gu Z Y, Zhang W, et al. Microbiome of the lower genital tract in Chinese women with endometriosis by 16s-rRNA sequencing technique: a pilot study[J]. Ann Transl Med, 2020, 8(21): 1440.

[5]Lin W C, Chang C Y Y, Hsu Y A, et al. Increased risk of endometriosis in patients with lower genital tract infection: a nationwide cohort study[J]. Medicine (Baltimore), 2016, 95(10): e2773.

[6]Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women[J]. Proc Natl Acad Sci U S A, 2011, 108(Suppl 1): 4680-4687.

[7]Molina N M, Sola-Leyva A, Saez-Lara M J, et al. New opportunities for endometrial health by modifying uterine microbial composition: present or future?[J]. Biomolecules, 2020, 10(4): 593.

[8]Amro B, Ramirez Aristondo M E, Alsuwaidi S, et al. New understanding of diagnosis, treatment and prevention of endometriosis[J]. Int J Environ Res Public Health, 2022, 19(11): 6725.

[9]Leonardi M, Hicks C, El-Assaad F, et al. Endometriosis and the microbiome: a systematic review[J]. BJOG, 2020, 127(2): 239-249.

[10]Khan K N, Fujishita A, Hiraki K, et al. Bacterial contamination hypothesis: a new concept in endometriosis[J]. Reprod Med Biol, 2018, 17(2): 125-133.

[11]Fan P Y, Li T. Unveil the pain of endometriosis: from the perspective of the nervous system[J]. Expert Rev Mol Med, 2022, 24: e36.

[12]Yano M, Matsuda A, Natsume T, et al. Pain-related behavior and brain activation in cynomolgus macaques with naturally occurring endometriosis[J]. Hum Reprod, 2019, 34(3): 469-478.

[13]Wang S J, Shang Y J, Pi Z Y, et al. Temporal changes of the oral and fecal microbiota after mild traumatic brain injury in rats by 16S rRNA sequencing[J]. Microorganisms, 2023, 11(6): 1452.

[14]Slocum C, Kramer C, Genco C A. Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis[J]. J Intern Med, 2016, 280(1): 114-128.

[15]Hu J J, Li G J, Huang M M, et al. Analysis of microbiota reveals the underlying mechanism of PHF11 in the development of Enterococcus-regulated endometriotic cysts[J]. iScience, 2023, 26(11): 108158.

[16]Dicks L M T. Gut bacteria and neurotransmitters[J]. Microorganisms, 2022, 10(9): 1838.

[17]Wang J F, Li Z Z, Ma X L, et al. Translocation of vaginal microbiota is involved in impairment and protection of uterine health[J]. Nat Commun, 2021, 12(1): 4191.

[18]Witkin S S, Linhares I M. Why do lactobacilli dominate the human vaginal microbiota?[J]. BJOG, 2017, 124(4): 606-611.

[19]黄思霞. 不同分期子宫内膜异位症患者肠道微生物菌群的特征性研究[D]. 广州: 南方医科大学, 2023: 75.

[20]Chadchan S B, Naik S K, Popli P, et al. Gut microbiota and microbiota-derived metabolites promotes endometriosis[J]. Cell Death Discov, 2023, 9(1): 28.

[21]Baker J M, Al-Nakkash L, Herbst-Kralovetz M M. Estrogen-gut microbiome axis: physiological and clinical implications[J]. Maturitas, 2017, 103: 45-53.

[22]Pai A H Y, Wang Y W, Lu P C, et al. Gut microbiome-estrobolome profile in reproductive-age women with endometriosis[J]. Int J Mol Sci, 2023, 24(22): 16301.

[23]Elkafas H, Walls M, Al-Hendy A, et al. Gut and genital tract microbiomes: dysbiosis and link to gynecological disorders[J]. Front Cell Infect Microbiol, 2022, 12: 1059825.

[24]Guo R, Chen L H, Xing C G, et al. Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential[J]. Br J Anaesth, 2019, 123(5): 637-654.

[25]Ding X M, Zhou J, Zhao L, et al. Intestinal flora composition determines microglia activation and improves epileptic episode progress[J]. Front Cell Infect Microbiol, 2022, 12: 835217.

[26]Saldova R. Cause of cancer and chronic inflammatory diseases and the implications for treatment[J]. Discov Med, 2016, 22(120): 105-119.

[27]Zhai L X, Wu J Y, Lam Y Y, et al. Gut-microbial metabolites, probiotics and their roles in type 2 diabetes[J]. Int J Mol Sci, 2021, 22(23): 12846.

[28]Shabbir U, Arshad M S, Sameen A, et al. Crosstalk between gut and brain in Alzheimer's disease: the role of gut microbiota modulation strategies[J]. Nutrients, 2021, 13(2): 690.

[29]Li M F, Yang H, Shao C Y, et al. Application of dominant gut microbiota promises to replace fecal microbiota transplantation as a new treatment for Alzheimer's disease[J]. Microorganisms, 2023, 11(12): 2854.

[30]Feng C, Li A H, Yin C H, et al. Realgar alleviated neuroinflammation induced by high protein and high calorie diet in rats via the microbiota-gut-brain axis[J]. Nutrients, 2022, 14(19): 3958.

[31]Gao Y J, Ji R R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain[J]. Pharmacol Ther, 2010, 126(1): 56-68.

[32]Fattori V, Franklin N S, Gonzalez-Cano R, et al. Nonsurg-ical mouse model of endometriosis-associated pain that responds to clinically active drugs[J]. Pain, 2020, 161(6): 1321-1331.

[33]Wei W X, Zhang X W, Tang H R, et al. Microbiota composition and distribution along the female reproductive tract of women with endometriosis[J]. Ann Clin Microbiol Antimicrob, 2020, 19(1): 15.

[34]Mahajan G, Doherty E, To T, et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip[J]. Microbiome, 2022, 10(1): 201.

[35]Gholiof M, Adamson-De Luca E, Wessels J M. The female reproductive tract microbiotas, inflammation, and gynecological conditions[J]. Front Reprod Health, 2022, 4: 963752.

[36]Lu F L, Wei J, Zhong Y Y, et al. Antibiotic therapy and vaginal microbiota transplantation reduce endometriosis disease progression in female mice via NF-κB signaling pathway[J]. Front Med (Lausanne), 2022, 9: 831115.

[37]Chao X P, Liu Y, Fan Q B, et al. The role of the vaginal microbiome in distinguishing female chronic pelvic pain caused by endometriosis/adenomyosis[J]. Ann Transl Med, 2021, 9(9): 771.

[38]Ustianowska K, Ustianowski Ł, Machaj F, et al. The role of the human microbiome in the pathogenesis of pain[J]. Int J Mol Sci, 2022, 23(21): 13267.

[39]Ata B, Yildiz S, Turkgeldi E, et al. The endobiota study: comparison of vaginal, cervical and gut microbiota between women with stage 3/4 endometriosis and healthy controls[J]. Sci Rep, 2019, 9(1): 2204.

[40]Salmeri N, Viganò P, Cavoretto P, et al. The kisspeptin system in and beyond reproduction: exploring intricate pathways and potential links between endometriosis and polycystic ovary syndrome[J]. Rev Endocr Metab Disord, 2024, 25(2): 239-257.

[41]Khan K N, Fujishita A, Masumoto H, et al. Molecular detection of intrauterine microbial colonization in women with endometriosis[J]. Eur J Obstet Gynecol Reprod Biol, 2016, 199: 69-75.

[42]Akiyama K, Nishioka K, Khan K N, et al. Molecular detection of microbial colonization in cervical mucus of women with and without endometriosis[J]. Am J Reprod Immunol, 2019, 82(2): e13147.

[43]Xu H, Zhao J, Lu J Q, et al. Ovarian endometrioma infiltrating neutrophils orchestrate immunosuppressive microenvironment[J]. J Ovarian Res, 2020, 13(1): 44.

[44]Khan K N, Fujishita A, Koshiba A, et al. Biological differences between intrinsic and extrinsic adenomyosis with coexisting deep infiltrating endometriosis[J]. Reprod Biomed Online, 2019, 39(2): 343-353.

[45]Kulinska K I, Białas P, Dera-Szymanowska A, et al. The role of phoenixin in the proliferation and migration of ectopic epithelial cells in vitro[J]. Biochem Biophys Res Commun, 2023, 646: 44-49.

[46]Lee S R, Lee J C, Kim S H, et al. Altered composition of microbiota in women with ovarian endometrioma: microbiome analyses of extracellular vesicles in the peritoneal fluid[J]. Int J Mol Sci, 2021, 22(9): 4608.

[47]Wang X M, Ma Z Y, Song N. Inflammatory cytokines IL-6, IL-10, IL-13, TNF-α and peritoneal fluid flora were associated with infertility in patients with endometriosis[J]. Eur Rev Med Pharmacol Sci, 2018, 22(9): 2513-2518.

[48]Chang C Y Y, Chiang A J, Lai M T, et al. A more diverse cervical microbiome associates with better clinical outcomes in patients with endometriosis: a pilot study[J]. Biomedicines, 2022, 10(1): 174.

[49]Nabiel Y, ELshahawy H, Mosbah A. Intrauterine bacterial colonization and endometrial microRNA-17-5p levels in association to endometriosis: a study in an Egyptian population[J]. Immunol Invest, 2020, 49(6): 611-621.

[50]Perrotta A R, Borrelli G M, Martins C O, et al. The vaginal microbiome as a tool to predict rASRM stage of disease in endometriosis: a pilot study[J]. Reprod Sci, 2020, 27(4): 1064-1073.

[51]Rzewuska A M, Z·ybowska M, Sajkiewicz I, et al. Gonadotropin-releasing hormone antagonists-a new hope in endometriosis treatment?[J]. J Clin Med, 2023, 12(3): 1008.

[52]Slate-Romano J J, Yano N, Zhao T C. Irisin reduces inflammatory signaling pathways in inflammation-mediated metabolic syndrome[J]. Mol Cell Endocrinol, 2022, 552: 111676.

[53]Mazur-Bialy A I, Pochec' E, Zarawski M. Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation[J]. Int J Mol Sci, 2017, 18(4): 701.

[54]Khan K N, Fujishita A, Kitajima M, et al. Intra-uterine microbial colonization and occurrence of endometritis in women with endometriosis[J]. Hum Reprod, 2014, 29(11): 2446-2456.

[55]Chadchan S B, Cheng M, Parnell L A, et al. Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: a potential role for gut microbiota[J]. Hum Reprod, 2019, 34(6): 1106-1116.

[56]Mancilla V J, Braden-Kuhle P N, Brice K N, et al. A synthetic formula amino acid diet leads to microbiome dysbiosis, reduced colon length, inflammation, and altered locomotor activity in C57BL/6J mice[J]. Microorganisms, 2023, 11(11): 2694.

[57]Porpora M G, Brunelli R, Costa G, et al. A promise in the treatment of endometriosis: an observational cohort study on ovarian endometrioma reduction by N-acetylcysteine[J]. Evid Based Complement Alternat Med, 2013, 2013: 240702.

[58]Sienko A, Cichosz A, Urban A, et al. The effect of two anti-inflammatory dietary components, omega-3 and resveratrol, on endometriosis[J]. Ginekol Pol, 2024, 95(7): 573-583.

[59]Arablou T, Aryaeian N, Khodaverdi S, et al. The effects of resveratrol on the expression of VEGF, TGF-β, and MMP-9 in endometrial stromal cells of women with endometriosis[J]. Sci Rep, 2021, 11(1): 6054.

[60]Qu Z H, Tian P J, Wang L L, et al. Dietary nucleotides promote neonatal rat microbiota-gut-brain axis development by affecting gut microbiota composition and metabolic function[J]. J Agric Food Chem, 2023, 71(49): 19622-19637.

[61]Hu Z Y, Zhao P H, Liao A M, et al. Fermented wheat germ alleviates depression-like behavior in rats with chronic and unpredictable mild stress[J]. Foods, 2023, 12(5): 920.

[62]Pferschy-Wenzig E M, Pausan M R, Ardjomand-Woelkart K, et al. Medicinal plants and their impact on the gut microbiome in mental health: a systematic review[J]. Nutrients, 2022, 14(10): 2111.

[63]Paredes S, Cantillo S, Candido K D, et al. An association of serotonin with pain disorders and its modulation by estrogens[J]. Int J Mol Sci, 2019, 20(22): 5729.

[64]Chiantera V, Laganà A S, Basciani S, et al. A critical perspective on the supplementation of Akkermansia muciniphila: benefits and harms[J]. Life (Basel), 2023, 13(6): 1247.

[65]Paladino L, Rappa F, Barone R, et al. NF-κB regulation and the chaperone system mediate restorative effects of the probiotic Lactobacillus fermentum LF31 in the small intestine and cerebellum of mice with ethanol-induced damage[J]. Biology (Basel), 2023, 12(11): 1394.

[66]Xu R L, Zhang Y X, Chen S R, et al. The role of the probiotic Akkermansia muciniphila in brain functions: insights underpinning therapeutic potential[J]. Crit Rev Microbiol, 2023, 49(2): 151-176.

上一篇: 高龄不孕女性生育压力及其影响因素分析!

下一篇: 35岁男子酒后头晕不缓解,以为是喝多了酒...


 本站广告